Transient Thermal Modeling Techniques for WBG Device Packaging

Mark Eblen
R&D Program Manager
Kyocera America, San Diego, CA 92123
Phone: (858) 614-2537
email: mark.eblen@kyocera.com
Outline

- Introduction
- Thermophysical Material Characterization
- Finite Element Global/Submodel Methodology
- Results
- Conclusions
Who is Kyocera America?

Our San Diego facility is a major supplier of metallized ceramic packages for RF and microwave wireless telecom devices. Kyocera America offers a complete line of multilayer ceramic/organic packages for semiconductors in commercial and military markets. We also offer in-house flip-chip and wire-bond packaging services.
What is a Wide Band Gap (WBG) semiconductor?

- The definition is not very well defined but since a direct comparison of Si seems logical. It is usually taken as 2X the energy band gap of Silicon or approximately 2.0 eV.
- This includes Indium Nitride (InN) all the way up to diamond which is approximately 6.4 eV.
- GaAs is approx 1.4 eV and Si$_{1-x}$Ge$_x$ is approximately .7~1.1 eV.
- Some good online sources of info/data are:

 www.onr.navy.mil/sci_tech/31/312/ncsr/

 www.ecn.purdue.edu/WBG/
WBG Motivation & Thermal Management

- A large band gap translates to a high breakdown potential which allows the design of power devices that can operate at higher voltages and temperatures (i.e., higher power density).
- Silicon is frequency limited around ≥ 2.5 GHz. By definition of their excellent electrical transport properties (small dielectric constant and high saturation velocity), WBG semiconductors allow for much higher frequency during operation.
- WBG semiconductor devices would reduce the number of Si based amplifiers in the wireless infrastructure world.
- WBG typically have better thermophysical properties also versus Si.
Recall this is a “transient” analysis discussion thus thermal energy transport is governed by the materials **thermal diffusivity**. Measures the ability of a material to conduct thermal energy relative to its ability to store.

\[
\alpha = \frac{k}{c_p \cdot \rho}
\]

where:
- \(\alpha\) = thermal diffusivity *(thermophysical prop)*
- \(k\) = thermal conductivity *(transport property)*
- \(c_p\) = specific heat capacity @ constant pressure *(thermodynamic property)*
- \(\rho\) = density *(thermodynamic property)*

 \([c_p \rho]\) = volumetric heat capacity

The performance of electronic systems degrade in proportion to the environment temperature. This temp also determines the service life of the electronic component. An industry rule-of-thumb at or near the design operating temperature states the \(N_{50}\) is cut in half for each 10C rise in temp. Excessive high temps can degrade the chemical/structural integrity of various semiconductor devices. Large fluctuations of temp as well as spatial variations of temp in equipment become responsible for most field failures.

The purpose of thermal design is to limit spatial variations and maintain some nominal value.
BeO, InP, and SiC thermal diffusivity is governed by typical nonconductor phonon transport mechanism (e.g. lattice vibration) and decrease rapidly with inverse of temperature.
Laser Flash System To Measure Thermal Diffusivity

Description: Custom apparatus measures *thru-plane* thermal conductivity (TC) of a material whose one side has been subjected to a short duration laser pulse. The resultant time vs. temp is monitored by an IR detector. Material TC is resolved by fitting the shape of this temperature rise curve to a 1-D heat flow model.

\[
\frac{\partial T}{\partial t} = \frac{\kappa}{\rho C_p} \times \frac{\partial^2 T}{\partial x^2}
\]

KAI Proprietary TC System used to validate thermal material properties used in package design (1999).
Closed-Form Solution vs. Simulation

Most thermal pkg design problems are 3D and irregular by nature which don’t lend themselves to transient closed-form solutions. The finite element method (FEM) provides us a robust numerical technique to solve these specialized cases.

ANSYS™ steady state thermal example

Typical Global Model Results cont.

Validate even simple models!
ANSYS™ FE Model File Description Hierarchy

Design variables parameterized for easy FE model changes.

ANSYS input file calls 2D IGES geometry file. Drawing areas are sub-divided for better mesh control.

Ansys text based input file example (*.in)
WBG Example: Bipolar RF Ceramic Package

Detailed view of \(\frac{1}{4}\) symmetric typical submodel solid model. Thermal bc’s specified on all surfaces except top face.
FE Submodel Technique for Increased T(t) Resolution

Submodel location

Course mesh global model with $\frac{1}{2}$ symmetric submodel volume outline shown in green.

heat gen volume

Detailed view of $\frac{1}{4}$ symmetric submodel. Thermal bc's specified on all surfaces except top face and symmetric planes.
Global model temperature plot after ten cycles with WCu heat sink

Transient Analysis Conditions:
200us pulse width @ 10% duty cycle
Bottom global model prescribed at 90C for this example, typically an effective convection coefficient is used (W/mm²K).

Submodel temperature plot after ten cycles

WBG Bipolar RF Ceramic Package Results
Device is not operated in a continuous “on” state, a transient analysis must be conducted considering the time varying power pulse [e.g. P(t)].

We will define the “on-time” of the cycle to be when the output is high, and the “off-time” when the output is low. Duty-cycle is defined to be:

\[\text{Duty-Cycle} = \frac{\text{On-Time}}{\text{On-Time} + \text{Off-Time}} \]

10% Duty Cycle Transient ΔT History.

Quasi-steady state sub-model max \(T_j=283°C\)

Quasi-steady state global max \(T_j=268°C\)

15 °C resolution due to submodel technique
Sharp “spike-like” thermal gradients can be resolved with submodel technique.
Key Concept: Most Temperature Rise in Device
ANSYS Model “Typical” Output

Key locations in FE global/submodel are tracked in the time domain

<table>
<thead>
<tr>
<th>time (us)</th>
<th>tmax</th>
<th>loc_a</th>
<th>loc_b</th>
<th>loc_c</th>
<th>loc_d</th>
<th>loc_e</th>
<th>loc_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000000000000E-06</td>
<td>90.000</td>
<td>90.000</td>
<td>90.000</td>
<td>90.000</td>
<td>90.000</td>
<td>90.000</td>
<td>90.000</td>
</tr>
<tr>
<td>100.000010000000</td>
<td>308.47</td>
<td>102.18</td>
<td>94.129</td>
<td>21.816</td>
<td>21.005</td>
<td>90.101</td>
<td>90.042</td>
</tr>
<tr>
<td>200.000010000000</td>
<td>374.27</td>
<td>115.43</td>
<td>144.38</td>
<td>21.005</td>
<td>21.005</td>
<td>90.101</td>
<td>90.042</td>
</tr>
<tr>
<td>300.000010000000</td>
<td>414.05</td>
<td>130.26</td>
<td>144.38</td>
<td>21.005</td>
<td>21.005</td>
<td>90.101</td>
<td>90.042</td>
</tr>
<tr>
<td>400.000010000000</td>
<td>440.92</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>90.101</td>
<td>90.042</td>
</tr>
<tr>
<td>500.000010000000</td>
<td>460.90</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>90.101</td>
<td>90.042</td>
</tr>
<tr>
<td>600.000010000000</td>
<td>460.90</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>90.101</td>
<td>90.042</td>
</tr>
<tr>
<td>700.000010000000</td>
<td>460.90</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>90.101</td>
<td>90.042</td>
</tr>
<tr>
<td>800.000010000000</td>
<td>460.90</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>90.101</td>
<td>90.042</td>
</tr>
<tr>
<td>900.000010000000</td>
<td>460.90</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>90.101</td>
<td>90.042</td>
</tr>
<tr>
<td>1000.000010000000</td>
<td>460.90</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>90.101</td>
<td>90.042</td>
</tr>
<tr>
<td>1100.000010000000</td>
<td>460.90</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>90.101</td>
<td>90.042</td>
</tr>
<tr>
<td>1200.000010000000</td>
<td>460.90</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>90.101</td>
<td>90.042</td>
</tr>
<tr>
<td>1300.000010000000</td>
<td>460.90</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>90.101</td>
<td>90.042</td>
</tr>
<tr>
<td>1400.000010000000</td>
<td>460.90</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>90.101</td>
<td>90.042</td>
</tr>
<tr>
<td>1500.000010000000</td>
<td>460.90</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>90.101</td>
<td>90.042</td>
</tr>
</tbody>
</table>

Global Model Nodal Results

<table>
<thead>
<tr>
<th>time (us)</th>
<th>tmax</th>
<th>loc_a</th>
<th>loc_b</th>
<th>loc_c</th>
<th>loc_d</th>
<th>loc_e</th>
<th>loc_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000000000000E-06</td>
<td>90.000</td>
<td>90.000</td>
<td>90.000</td>
<td>90.000</td>
<td>90.000</td>
<td>90.000</td>
<td>90.000</td>
</tr>
<tr>
<td>100.000010000000</td>
<td>308.47</td>
<td>102.18</td>
<td>94.129</td>
<td>21.816</td>
<td>21.005</td>
<td>90.101</td>
<td>90.042</td>
</tr>
<tr>
<td>200.000010000000</td>
<td>374.27</td>
<td>115.43</td>
<td>144.38</td>
<td>21.005</td>
<td>21.005</td>
<td>90.101</td>
<td>90.042</td>
</tr>
<tr>
<td>300.000010000000</td>
<td>414.05</td>
<td>130.26</td>
<td>144.38</td>
<td>21.005</td>
<td>21.005</td>
<td>90.101</td>
<td>90.042</td>
</tr>
<tr>
<td>400.000010000000</td>
<td>440.92</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>90.101</td>
<td>90.042</td>
</tr>
<tr>
<td>500.000010000000</td>
<td>460.90</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>90.101</td>
<td>90.042</td>
</tr>
<tr>
<td>600.000010000000</td>
<td>460.90</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>90.101</td>
<td>90.042</td>
</tr>
<tr>
<td>700.000010000000</td>
<td>460.90</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>90.101</td>
<td>90.042</td>
</tr>
<tr>
<td>800.000010000000</td>
<td>460.90</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>90.101</td>
<td>90.042</td>
</tr>
<tr>
<td>900.000010000000</td>
<td>460.90</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>90.101</td>
<td>90.042</td>
</tr>
<tr>
<td>1000.000010000000</td>
<td>460.90</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>90.101</td>
<td>90.042</td>
</tr>
<tr>
<td>1100.000010000000</td>
<td>460.90</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>90.101</td>
<td>90.042</td>
</tr>
<tr>
<td>1200.000010000000</td>
<td>460.90</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>90.101</td>
<td>90.042</td>
</tr>
<tr>
<td>1300.000010000000</td>
<td>460.90</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>90.101</td>
<td>90.042</td>
</tr>
<tr>
<td>1400.000010000000</td>
<td>460.90</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>90.101</td>
<td>90.042</td>
</tr>
<tr>
<td>1500.000010000000</td>
<td>460.90</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>150.99</td>
<td>90.101</td>
<td>90.042</td>
</tr>
</tbody>
</table>

Submodel Nodal Results
FE Submodel Technique Also Used for GaAs FETs

Course mesh global model with ½ symmetric submodel volume shaded. Note: constraint equations were used to tie h/s course mesh with GaAs fine mesh.

Detailed view of ½ symmetric submodel. Thermal bc’s specified on all surfaces except top face.
AuSn Solder Die Attach Transient Thermal FE Results

Very little capacitive thermal coupling between P/A stages (e.g. thermal diffusivity of all materials is high)

\[\alpha = \frac{k}{\rho \cdot c_p} \]

- \(\alpha \) = thermal diffusivity
- \(k \) = thermal conductivity
- \(\rho c_p \) = volumetric heat capacity

Global Temp Plot During Pulse Off Conditions.

10% Duty Cycle Transient \(\Delta T \) History for all P/A Stages.
What if Scenario: Epoxy Die Attach

Transient ΔT History
(4mil epoxy @ $k=2.0$ W/mK)

Eventual quasi-steady state temperature achieved after ≈ 8 sec

Monotonic sawtooth response due to poor thermal diffusion (i.e., low epoxy diffusivity)
Validation: KAI-R&D Internal θ_{jc} Measurements

Scope:

Conduct steady-state internal θ_{jc} measurements on laminate heat sink pkgs. The control group shall be a conventional CuW pkg in the same outline.

Fig. 1 (a) KAI-R&D infrared μthermal imaging system to measure package θ_{jc}. (b) Detailed view of package measurement setup showing sample coated with a fine layer of high emissivity paint for a reliable IR scan (Note: Si is translucent at 5μm).
\(\theta_{jc} \) Measurement Setup Description

Fig 4: (a) Test setup with description. (b) A1670 package with thermal test die attached. (c) Kyocera 5 x 5 x .4mm 100W silicon thermal test chip dwg, illustrating RTD temperature sensor pattern and heater resistive pattern.
Steady State IR Measurement Results cont...

Average temperature for area was taken as T_j, refer to histogram bottom left.

Non-uniform heating of die face clearly visible.
Conclusions

- Thermal behavior of WBG devices can be effectively modeled using standard FE tools. Careful understanding of boundary conditions is critical.
- Must characterize thermophysical materials over temperature of interest.
- Should include device transistor details in thermal model. Majority of temperature rise is in top layers of device.
- Validate thermal model assumptions via IR imaging in time domain (TBD).
- Thermal design is one part of an integrated design approach.
Appendix
The thermal interface resistance across a joint is a complex function of the geometric and thermophysical properties of the contacting solids and of any interstitial substance at the interface (i.e., air or thermal grease). The important parameters are: surface texture, waviness, hardness, modulus of elasticity, mechanical load, temperature levels, and material conductivity's.

(refs: Incropera & Dewitt, M. M. Yovanovich - MHTL Waterloo)
Cooling Strategy Will Be Critical!

Typical phased array radar conduction path, note interface 2 and interface 3.

Example of liquid cooling of chip face